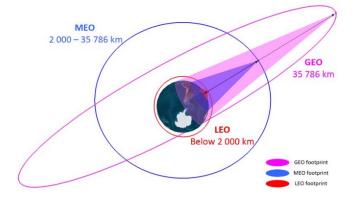
Small Satellite and LEO Introduction

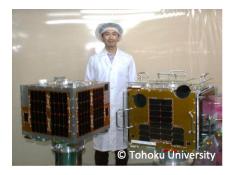

Small Satellite Workshop 2025

Resources and Disclaimer

- The workshop material we be heavily based on external resources of the followings
- State of the Art Small Satellite by NASA
- CubeSat 1-0-1 by NASA
- KiboCUBE Academy
- Resource page
 - https://satworkshop24.syssec.org/resources

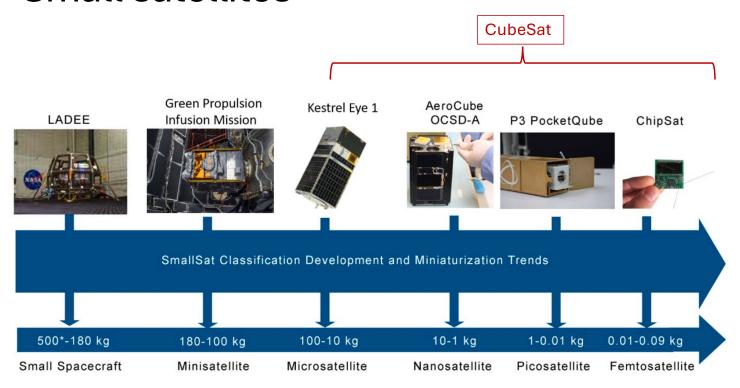
What is Satellite?

- How can it circle around the Earth?
 - Basic Physics
 - Balance between gravity and velocity
 - The closer to earth, faster the velocity
 - Vice versa
- GEO satellites
 - Geo-stationary Earth Orbit
 - A circle per day
- LEO satellites
 - Low Earth Orbit
 - A circle per 90 ~ 120 min
 - Eclipses every 1:30 ~ 2 hours

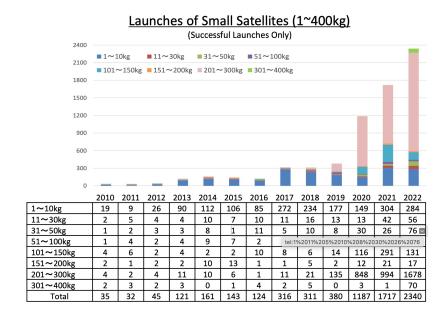

Johannes Kepler, image: Wikipedia

Large satellite

- Large mass
- High cost
- Long development time
- Dedicated launch
- Need high-reliability, low-risk
- High-performance, low observation frequency


Spacecrafts

Small satellite


- Small mass
- · Low cost
- · Short development time
- Small mass = Frequent launch opportunities
- Low cost
 - Can try challenging missions, realize large
- Constellations/networks
 - · Frequent Observations
- Rapid Development
 - Can utilize brand new technologies
- Suitable platform for space education and rapid technology demonstration

Small satellites

Small Satellites on the Rise

- The number of small satellites smaller than 400kg, including megaconstellations, is rapidly increasing.
- Large portion of them are mega-constellation of communication satellites

Small satellite Launches

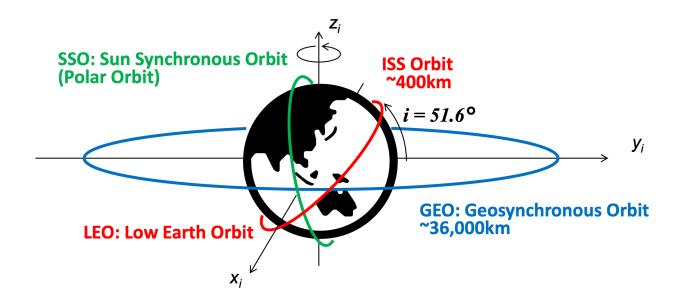
SATELLITE LAUNCH HISTORY & MARKET FORECAST

Nano/Microsatellites (1 - 50 kg)



Image: SpaceWorks

Small Satellite Opportunities


- "Start small, go big!"
- CubeSats have become a major game-changer
 - No longer for education only, but for actual space exploration
 - Achievements obtained from CubeSats can be applied to advanced missions.
- Even 1U CubeSats bring everything within your reach!

Different kinds of of Earth Orbit

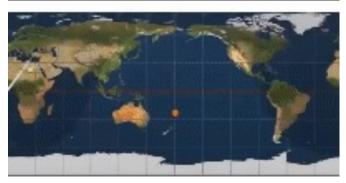
• GEO, ISS orbit, SSO, LEO

Example: ISS Orbit

• ISS Orbit:

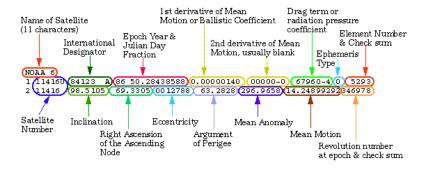
Altitude: ≃ 400km*

• Inclination: \simeq 51.6 deg


• Orbital period: \simeq 91 min

· Orbit altitude changes for about ±20km

- CubeSats deployed from the ISS stay in almost the same orbit as the ISS.
- Slight differences in initial relative velocity and different mechanical characteristics, such as mass and shape (and hence, ballistic coefficient), make the CubeSats separate from each other into different orbits.
- ISS orbit covers the ground surface of regions with lower latitude (between ± 51.6 deg).
- ISS rotates around the Earth about 16 times a day, while the Earth rotates about 22.5 deg during the 1 orbital period of the ISS.



Spheresoft

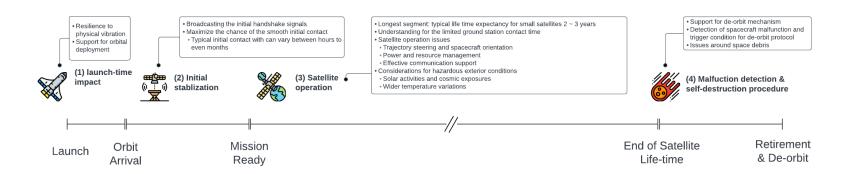
TLE (Two Line Element)

- TLE: Data format encoding orbital element
 - Two-line text containing information about the movement of an object in orbit around the Earth at a given time ("epoch")

```
ISS (ZARYA)
1 25544U 98067A 08264.51782528 -.00002182 00000-0 -11606-4 0 2927
2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537
```

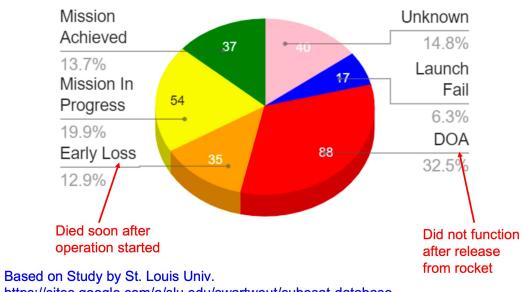

NORAD ID

- The Satellite Catalog Number (SATCAT)
- A.K.A NORAD (North American Aerospace Defense) ID is a sequential nine-digit number
 - Assigned by the USSPACECOM in the order of launch or discovery to all artificial objects in the Earth oribit
 - NORAD ID 1: Sputnik


Satellite Operational Components

- Ground Station
- Command and Control
- Satellite structure
- Payload component

Operational Processes


- Temporal perspective
- Depicts post-launch operations only
- Comparable or even more time are required for
 - Planning, development, and testing

CubeSat Failures

Failure rate is about 50%

CubeSat Mission Status, 2000-present (271 spacecraft)

https://sites.google.com/a/slu.edu/swartwout/cubesat-database

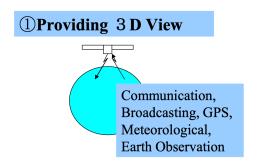
Frequent Causes of Failure and Countermeasures

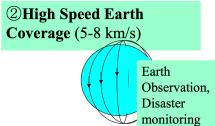
- Radiation causes electronics failures
 - Use space-proven parts or conduct radiation tests during early development phases
- Electric power subsystem fails to provide power, or battery voltage gets very low and cannot be recovered
 - Design satellite behaviors under low battery voltage
 - Make solar power generation possible in any situation
- Communication subsystem fails to communicate with the ground station because of component failures, insufficient RF power or EMI (Electromagnetic Interference)...
 - Implement backup systems (redundant receivers, etc.)
 - Calculate the link equation correctly and add enough link margin
 - Conduct ground tests using EM or FM in a realistic situation
 - Find and consult with communication technology experts

Why Space System is Difficult?

Harsh Space Environment	
Vacuum	Vaporization, cold welding, friction, electric discharge, change of material, heat spot
Radiation	Electronics parts malfunction and breakdown, degradation of solar cells and materials
Thermal	Large temperature differences/cycles, heat shock, heat spot
Launch	Vibration, shock, acceleration, sound vibration
Distance	Long range communication over 500-2000 km

Others: Atomic Oxygen, Plasma, Debris/Meteoroids, Ultraviolet rays

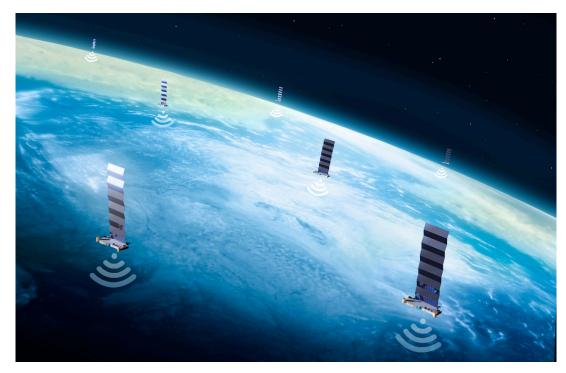

Non-Maintainable System


- A satellite cannot be touched after launch
- Sometimes a satellite must survive 10+ years without any human interactions

- Be imaginative
 - Consider all the possible events and anomalies which may happen to your satellite and prepare countermeasures
- Be rigorous
 - Conduct ground tests in various settings in the space environment, in various operation modes

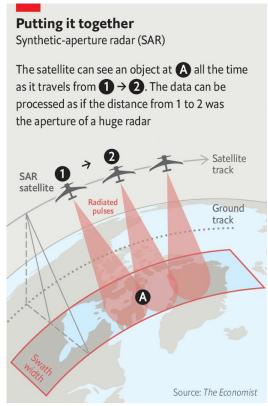
Space Features

- **3Above Atmosphere**
- Space Telescope, Various spectral observations,
- Solar power generation

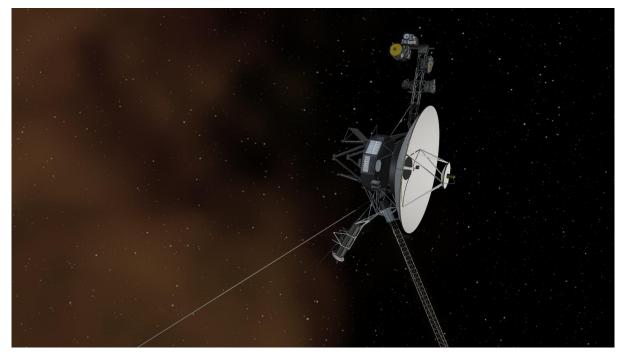

- **4** Long time μG environment
- New material/medicine
- Life science experiment

- **⑤Space as Exploration Target**
- · Observation of Planets, Small bodies
- · Particles, Fields, etc.

6"Humans in Space" (travel)
78---- Waiting for other
new ideas!

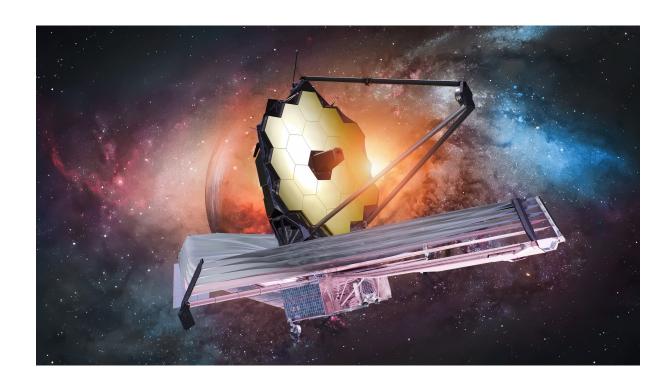

Communication/broadcasting satellite

- Starlink Broadband
 - Mega constellation
 - 1. Providing 3D view


Synthetic Aperture Radar (SAR)

- A technique for producing fineresolution images from a resolutionlimited radar system
 - 1. Providing 3D view
 - 2. High speed coverage of the Earth

The Economist


Deep Space Exploration Probe

5. Space as an exploration target

'Voyager 2' probe in interstellar space. **NASA/JPL-CALTECH**

James Webb: Space Telescope

3. Staying above the atmosphere

What is Your Space Mission?

- How future will look like for you?
 - Will space be important for you?
- What applications can we think of?
 - Considering special features of the space
 - What would be interesting applications relevant to your research?
 - It is an open question to you!

Backup

Space Governance

- Who own the space?
- Still practical regulation and procedures to follow
- Many recommendations, but only a few enforceable regulations
- Open problem!